culated by the computer program of Mueller, Heaton \& Miller (1960), and the d spacings were obtained by the program of Mueller, Meyer \& Simonsen (1962). The density, measured by the immersion method, is $12.44 \mathrm{~g}_{\mathrm{cm}} \mathrm{cm}^{-3}$, and the X-ray density is $12.52 \mathrm{~g} . \mathrm{cm}^{-3}$. The observed and calculated d spacings and observed intensities are listed in Table 1. The observed intensities are in satisfactory agreement with the observed and calculated F^{2} values reported by Bertaut, Lemaire \& Schweizer (1965) for HoCo_{3}. The unit-cell constants of UCO_{3} and of several isostructural rare-earth compounds are listed in Table 2. In this Table the Figure in parentheses is the least-squares standard error of the last significant digit. The rare-earth compounds received various heat treatments (see Table 2), but all X-ray patterns were equally well resolved.

The author acknowledges the assistance of R. A. Conner, Jr, and J. W. Downey in the experimental work, and thanks to Dr J. B. Darby, Jr for reviewing the manuscript.

References

Bertaut, E. F., Lemaire, R. \& Schweizer, J. (1965). Bull. Soc. franc. Minér. Crist. 88, 580.
Cromer, D. T. \& Olsen, C. E. (1959). Acta Cryst. 12, 689.
Elliott, R. P. (1965). In Constitution of Binary Alloys, First Supplement. New York: McGraw Hill.
Mueller, M. H., Heaton, L. \& Miller, K. T. (1960). Acta Cryst. 13, 828.
Mueller, M. H., Meyer, E. F. H. \& Simonsen, S. H. (1962). ANL-6519, Argonne National Laboratory, Argonne, Illinois.

Acta Cryst. (1968). B24, 1396

Crystallographic data on disubstituted symmetric ureas. By S. V.Deshapande, Physics Department, Sardar Patel University, Vallabh Vidyanagar, Gujarat State, India and C.C.Meredith and R.A.Pasternak,* Stanford Research Institute, Menlo Park, California 94025, U.S.A.
(Received 5 June 1968)
The unit-cell dimensions and space groups of six disubstituted, symmetric ureas (RHN$)_{2} \mathrm{C}=\mathrm{O}$ have been established. The substituents R in this series were phenyl, p - and m-tolyl, m - and o-chlorophenyl and p-anisyl. Similar packing of the molecules in the unit cells is suggested by the data.

We report here the unit cells and space groups of six disubstituted symmetric ureas, $(\mathrm{RHN})_{2} \mathrm{C}=\mathrm{O}$, with $\mathrm{R}=$ phenyl, p - and m-tolyl, m and o-chlorophenyl and p-anisyl.

* Fulbright Professor, Sardar Patel University, Gujarat, India, 1966/67.

Needle crystals were obtained for all the compounds by slow evaporation of their solutions in 96% ethanol. They all showed good cleavage along two directions parallel to the needle axis and no cleavage perpendicular to it. Preliminary unit-cell dimensions were derived by indexing rotation photographs around the needle axis which was

Table 1. Crystal data for urea derivatives

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& Molecular weight \& $$
a^{\mathrm{A}}
$$ \& $$
\begin{aligned}
& \text { xial lengtl } \\
& b
\end{aligned}
$$ \& c \& Measured density \& $$
\begin{gathered}
\text { Number } \\
\text { of } \\
\text { molecules }
\end{gathered}
$$ \& Space group \& Crystal system \& Remarks

\hline Urea* \& 60.06 \& 5.66 A \& 5.66 Å \& 4.72 Å \& $1.33 \mathrm{~g} . \mathrm{cm}^{-3}$ \& 2.02 \& $P^{4} 2_{1}{ }^{\text {m }}$ \& Tetragonal \&

\hline Diphenylurea \& $212 \cdot 25$ \& 10.51 \& 11.73 \& 9.07 \& 1.23 \& 3.90 \& $P 2_{1}$ cn \& Orthorhombic \&

\hline Di-p-tolylurea \& $240 \cdot 29$ \& 9.85 \& 27.77 \& $4 \cdot 66$ \& $1 \cdot 26$ \& 4.02 \& $P{ }_{2}{ }_{1} a$ \& Orthorhombic \&

\hline Di-m-tolylurea \& $240 \cdot 29$ \& 9.72 \& 14.56 \& $4 \cdot 60$ \& 1.25 \& 2.04 \& $$
\begin{aligned}
& P 2_{1} 2_{1} 2 \\
& \left(P 2_{1} 2_{1} 2_{1}\right)
\end{aligned}
$$ \& Orthorhombic \&

\hline Di- m-chlorophenylurea \& 281-14 \& 9.72 \& 14.36 \& 4.55 \& 1.47 \& 2.00 \& $$
\begin{aligned}
& P 2_{1} 2_{1} 2 \\
& \left(P 2_{1} 2_{1} 2_{1}\right)
\end{aligned}
$$ \& Orthorhombic \&

\hline Di-o-chlorophenylurea \& 281.14

272.29 \& $\begin{aligned} & 23.00 \\ & \\ & \\ & \\ & \gamma^{*}=\end{aligned}$ \& $23 \cdot 20$
$81^{\circ} \mathrm{O}$ \& $4 \cdot 64$ \& 1.48
1.35 \& 7.85
7.95 \& Pban

P1 or PT \& Orthorhombic \& Poor crystals. $h=2 n$, very weak for $h 00, h 01$. $k=2 n$, very weak for $0 k 0,0 k 1$

\hline Di-p-anisylurea \& $272 \cdot 29$ \& \[
$$
\begin{aligned}
& \left(\gamma^{*}=\right. \\
& 21 \cdot 20 \\
& \left(=d_{100}\right)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \left.81^{\circ}\right) \\
& 13 \cdot 38 \\
& \left(=d_{010}\right)
\end{aligned}
$$
\] \& $9 \cdot 31$ \& 1.35 \& $7 \cdot 95$ \& $P 1$ or PT \& ${ }^{\text {Triclinic }}$ \& Odd layer lines on rotation about c axis very weak. $h k 0$ with $h+k$ odd absent; h and k odd very weak.

\hline
\end{tabular}

called the \mathbf{c} direction. The data given in Table 1 were obtained from $h k 0, h k 1$ and $h k 2$ Weissenberg photographs.

Density was measured by flotation. Except for the triclinic p-anisyl derivative, all the compounds are orthorhombic. The m-tolyl and m-chlorophenyl ureas are undoubtedly isomorphous. Their space group and the number of molecules per unit cell, two, require that each molecule have a twofold axis along the $\mathrm{C}=\mathrm{O}$ bond coinciding with the c direction. Although no molecular symmetry is imposed on the other compounds by their space groups and cell dimensions, it is likely that the twofold molecular symmetry is at least approximately preserved. The length of c is about equal to or double that of urea. Thus it is likely that

the $\mathrm{C}=\mathrm{O}$ bond is aligned with c and that two hydrogen bonds are formed between the two nitrogen atoms of one molecule and the oxygen of the next molecule, as is found for urea (Vaughan \& Donohue, 1952).

Molecular chains would thus be formed along the c direction; since the disubstituted ureas have no more hydrogen bonds available, cleavage would be parallel to \mathbf{c}.

The repeat distance along b of about $14 \AA$ (or twice this value) for the m - and p-substituted compounds is approximately equal to the longest molecular dimension. The latter is not very sensitive to rotation of the phenyl ring around the $\mathrm{N}-\mathrm{C}$ bond. The repeat of $10 \AA$ along a , which is about twice the length of \mathbf{c}, can accommodate two phenyl rings tilted 45° with respect to a and c.

The low crystal symmetry of the p-anisyl compound is unexpected. It may be due to interaction between the polar nitrogen and the ether oxygen atoms.

A three-dimensional structural analysis of the m-chlorophenyl compound is in progress. Further analysis of the other compounds is not contemplated.

The authors are greatly indebted to Professor B. N. Mankad of Sardar Patel University for the synthesis and crystallization of the compounds studied.

Reference

Vaughan, P. \& Donohue, J. (1952). Acta Cryst. 5, 530

Acta Cryst. (1968). B24, 1397
The lattice constants and space group of π-iodocyclopentadienyltetraphenylcyclobutadienylcobalt,
$\left(\pi-\mathbf{C}_{5} \mathbf{H}_{4}\right) \operatorname{Co}\left(\left(\mathrm{C}_{6} \mathbf{H}_{5}\right)_{4} \mathbf{C}_{4}\right]$. By Aimery Caron, Department of Chemistry, University of Massachusetts, Amherst, Mass. 01002, U.S.A.
(Received 27 May 1968)
The compound crystallizes in space group Pbcn with $a=21 \cdot 24, b=15 \cdot 30, c=32 \cdot 25 \AA$ with 16 molecules per unit cell.

The compound π-iodocyclopentadienyltetraphenylcyclobutadienylcobalt, $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{I}\right) \mathrm{Co}\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{C}_{4}\right]$, was first synthesized by Rausch \& Genetti (1967). These authors kindly supplied yellowish brown crystalline needles of this compound.

The following crystallographic data were obtained from rotation and Weissenberg photographs taken about the b (needle-axis) and c axes:
M.W. $606 \cdot 4$

System: orthorhombic
Lattice constants: $a=21 \cdot 24 \pm 0 \cdot 02, b=15 \cdot 30 \pm 0 \cdot 02$,

$$
\begin{aligned}
& c=32.25 \pm 0.02 \AA \\
& \lambda(\mathrm{Cu} \mathrm{~K} \mathrm{\alpha})=1.5418 \AA
\end{aligned}
$$

Systematic absences: $h k 0 ; h+k=2 n+1$

$$
\begin{aligned}
& h 0 l ; l=2 n+1 \\
& 0 k l ; k=2 n+1
\end{aligned}
$$

Space group: Pbcn, No. 60
Density: $D_{m}=1 \cdot 54 \pm 1 \mathrm{~g} . \mathrm{cm}^{-3}, D_{x}=1.537$ g.cm ${ }^{-3}$
on the basis of $Z=16$.
Since the molecular symmetry would not be expected to be 2 or $\overline{1}$, the asymmetric unit should include two molecules in $8(d)$ general positions. Because of this complication no further work is contemplated on this structure.

This study was supported by a grant from the Research Council at the University of Massachusetts.

Reference

Rausch, M. D. \& Genetti, R. A. (1967). J. Amer. Chem. Soc. 89, 5502.

